Discrepancy estimates for point sets on the s-dimensional Sierpiński carpet

نویسندگان

  • L. L. Cristea
  • F. Pillichshammer
  • G. Pirsic
  • K. Scheicher
چکیده

In a recent paper Cristea and Tichy introduced several types of discrepancies of point sets on the s-dimensional Sierpiński carpet and proved various relations between these discrepancies. In the present paper we prove a general lower bound for those discrepancies in terms of N , the cardinality of the point set, and we give a probabilistic proof for the existence of point sets with “small” discrepancy. Furthermore we consider a van der Corput type construction of point sets on Cs and determine the exact order of convergence of various notions of discrepancy. Finally, Carpet-Walsh functions are defined to prove an Erdős-Turán-Koksma inequality which we apply to digital point sets on the carpet.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrepancy estimates on the

In a recent paper Cristea and Tichy introduced several types of discrepancies of point sets on the s-dimensional Sierpiński carpet and proved various relations between these discrepancies. In the present paper we prove a general lower bound for those discrepancies in terms of N , the cardinality of the point set, and we give a probabilistic proof for the existence of point sets with “small” dis...

متن کامل

Minimal Discrete Energy Problems and Numerical Integration on Compact Sets in Euclidean Spaces

In this paper, we announce and survey recent results on (1) point energies, scar defects, separation and mesh norm for optimal N ≥ 1 arrangments of points on a class of d-dimensional compact sets embedded in R, n ≥ 1, which interact through a Riesz potential, and (2) discrepancy estimates of numerical integration on the d-dimensional unit sphere S, d ≥ 2.

متن کامل

Star discrepancy of generalized two-dimensional Hammersley point sets

We generalize to arbitrary bases recent results on the star discrepancy of digitally shifted two-dimensional Hammersley point sets in base 2 by Kritzer, Larcher and Pillichshammer. The key idea is to link our fundamental formula for the discrepancy function of generalized van der Corput sequences to the corresponding quantity for generalized two-dimensional Hammersley point sets. In that way, w...

متن کامل

Star Extreme Discrepancy of Generalized Two-dimensional Hammersley Point Sets

We generalize to arbitrary bases recent results on the star extreme discrepancy of digitally shifted two-dimensional Hammersley point sets in base 2 by Kritzer, Larcher and Pillichshammer. The key idea is to link our fundamental formula for the discrepancy function of generalized van der Corput sequences to the corresponding quantity for generalized two-dimensional Hammersley point sets. In tha...

متن کامل

Discrepancy bounds for low-dimensional point sets

The class of (t,m, s)-nets and (t, s)-sequences, introduced in their most general form by Niederreiter, are important examples of point sets and sequences that are commonly used in quasi-Monte Carlo algorithms for integration and approximation. Low-dimensional versions of (t,m, s)-nets and (t, s)-sequences, such as Hammersley point sets and van der Corput sequences, form important sub-classes, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004